تصفیه آب و فاضلاب به روش بیوفیلتر
تصفیه آب و فاضلاب به روش بیوفیلتر:
۱. مقدمه
بیوفیلتراسیون یک روش زیستمحیطی برای حذف آلایندههای آلی، نیتروژن، فسفر و ترکیبات سمی از آب و فاضلاب با استفاده از میکروارگانیسمهای چسبیده به یک بستر جامد (رسانه) است. این روش به دلیل هزینه پایین، سازگاری با محیط زیست و راندمان بالا، در تصفیه خانههای شهری و صنعتی کاربرد گسترده دارد.
۲. مکانیسم عملکرد
تجزیه هوازی: باکتریها و قارچها، آلایندههای آلی را به CO₂ و H₂O تبدیل میکنند.
نیتراتزدایی: باکتریهای بیهوازی نیترات (NO₃⁻) را به نیتروژن گازی (N₂) تبدیل میکنند.
جذب سطحی: آلایندهها روی سطح رسانه یا بیوفیلم جذب میشوند.
۳. انواع بیوفیلترها
نوع رسانه کاربرد
بیوفیلتر چکنده سنگ، پلاستیک یا سرامیک تصفیه فاضلاب شهری
بیوفیلتر غوطهور شن، زغال یا پکینگ پلیمری حذف نیتروژن و فسفر
MBBR حاملهای متحرک (مثل پلی اتیلن) تصفیه پساب صنعتی با بار آلی بالا
۴. طراحی سیستم بیوفیلتر
الف. پارامترهای کلیدی طراحی
۱. نوع آلاینده: BOD، نیتروژن، فسفر یا ترکیبات خاص.
۲. رسانه: سطح ویژه (m²/m³)، تخلخل و مقاومت مکانیکی.
۳. بار آلی: بر حسب kg BOD/m³/day.
۴. زمان ماند هیدرولیکی (HRT): معمولاً ۲–۸ ساعت.
۵. اکسیژن مورد نیاز: DO ≥ ۲ mg/L برای فرآیند هوازی.
ب. محاسبات کلیدی
۱. محاسبه حجم راکتور:
حجم (m³) = دبی (m³/day) × زمان ماند (day)
مثال: دبی ۱۰۰ m³/day و HRT = ۶ ساعت (۰.۲۵ روز) → حجم ≈ ۲۵ m³.
۲. بار آلی:
بار آلی (kg BOD/m³/day) = (غلظت BOD ورودی (mg/L) × دبی (m³/day)) / حجم راکتور (m³)
مثال: BOD ورودی ۳۰۰ mg/L، دبی ۵۰ m³/day، حجم ۱۰ m³ → بار آلی = ۱.۵ kg/m³/day.
۳. نیاز به اکسیژن:
اکسیژن مورد نیاز (kg O₂/day) = (BOD ورودی (kg/day) × راندمان حذف) / ۰.۳
مثال: BOD ورودی ۱۵ kg/day، راندمان ۹۰% → نیاز ≈ ۴۵ kg O₂/day.
۴. سطح ویژه رسانه:
سطح ویژه مؤثر (m²/m³) = (بار آلی × ۱۰۰۰) / نرخ بارگذاری (g BOD/m²/day)
۵. ساخت و تجهیزات
الف. انتخاب رسانه
پکینگ پلاستیکی: سطح ویژه ۲۰۰–۵۰۰ m²/m³، مناسب برای MBBR.
شن و سنگ: ارزان، اما سطح ویژه پایین (۵۰–۱۰۰ m²/m³).
زغال فعال: جذب ترکیبات آلی + زیستپالایی.
ب. اجزای سیستم
راکتور: مخزن بتنی، فایبرگلاس یا فلزی با سیستم توزیع آب.
سیستم هوادهی: دیفیوزرهای حباب ریز یا هوادهی سطحی.
سیستم برگشت لجن: برای حفظ تراکم بیومس.
ج. مراحل اجرا
۱. آمادهسازی رسانه: شستشو و ضدعفونی.
۲. ایجاد بیوفیلم: تلقیح رسانه با باکتریهای مورد نظر (مانند Nitrosomonas).
۳. راهاندازی تدریجی: افزایش دبی به مرور زمان برای تطبیق میکروارگانیسمها.
۴. پایش مداوم: اندازهگیری DO، pH، دما و غلظت آلایندهها.
۶. چالشها و مدیریت
گرفتگی رسانه: شستشوی معکوس با آب یا هوا.
تغییرات دما: استفاده از عایقبندی یا سیستمهای گرمایش/سرمایش.
سمیت آلایندهها: پیشتصفیه برای حذف مواد بازدارنده رشد میکروبی.
تعویض رسانه: هر ۵–۱۰ سال بسته به فرسودگی.
۷. مثال طراحی
شرایط:
دبی فاضلاب: ۲۰۰ m³/day
BOD ورودی: ۴۰۰ mg/L
هدف: حذف ۹۰% BOD
روش انتخابی: بیوفیلتر چکنده با پکینگ پلاستیکی
محاسبات:
بار آلی: ۴۰۰ mg/L × ۲۰۰ m³/day = ۸۰ kg BOD/day.
حجم راکتور: با فرض بار آلی ۰.۵ kg BOD/m³/day → حجم = ۸۰ / ۰.۵ = ۱۶۰ m³.
مساحت سطحی: با فرض ارتفاع ۳ متر → مساحت = ۱۶۰ / ۳ ≈ ۵۳.۳ m².
سیستم هوادهی: نیاز اکسیژن ≈ ۸۰ × ۰.۹ / ۰.۳ = ۲۴۰ kg O₂/day.
تجهیزات:
راکتور بتنی به ابعاد ۱۰m × ۵.۳m × ۳m.
پکینگ پلاستیکی با سطح ویژه ۳۰۰ m²/m³.
هوادهی با ۲۰ دیفیوزر حباب ریز.
۸. پیشرفتهای نوین
نانو رسانهها: افزایش سطح ویژه تا ۱۰۰۰ m²/m³ با استفاده از نانولولههای کربنی.
بیوفیلترهای هوشمند: کنترل خودکار پارامترها با سنسورهای IoT.
بیوفیلترهای هیبریدی: ترکیب با روشهای شیمیایی برای حذف فلزات سنگین.
۹. نتیجهگیری
بیوفیلترها به عنوان یک روش پایدار و مقرونبهصرفه، نقش کلیدی در تصفیه آب و فاضلاب دارند. طراحی دقیق بر اساس پارامترهای هیدرولیکی و بیولوژیکی، انتخاب رسانه مناسب و مدیریت بهینه فرآیند، تضمینکننده عملکرد مؤثر سیستم است. فناوریهای نوین مانند نانو رسانهها و سیستمهای هوشمند، آینده این روش را امیدوارکننده ساختهاند.
حذف آهن و منگنز در تصفیه آب و فاضلاب
روشهای سنتی و نوین حذف آهن و منگنز در تصفیه آب و فاضلاب:
۱. اهمیت حذف آهن و منگنز
آهن (Fe) و منگنز (Mn) از جمله فلزات محلول در آب هستند که باعث ایجاد مشکلاتی مانند لکهدار کردن سطوح، طعم و بوی نامطبوع، و رسوبگیری در لولهها میشوند.
استانداردهای مجاز:
آهن: ≤ ۰.۳ mg/L (WHO/EPA).
منگنز: ≤ ۰.۰۵ mg/L.
۲. روشهای سنتی حذف آهن و منگنز
الف. هوادهی و اکسیداسیون
مکانیسم: تبدیل آهن و منگنز محلول (Fe²⁺, Mn²⁺) به اشکال نامحلول (Fe³⁺, Mn⁴⁺) با استفاده از اکسیژن.
طراحی:
برجهای هوادهی (Aeration Towers): استفاده از پکینگ برای افزایش سطح تماس هوا-آب.
آبفشانها (Cascades): ایجاد آبشار برای افزایش اکسیژندهی.
فرمول اکسیداسیون:
۴Fe²⁺ + ۳O₂ + ۶H₂O → ۴Fe(OH)₃↓ (زرد-قرمز) ۲Mn²⁺ + O₂ + ۲H₂O → ۲MnO₂↓ (سیاه)
ب. فیلتراسیون با رسانههای اکسیدکننده
رسانهها:
گرین سند (Greensand): پوششدهی با منگنز اکسید (MnO₂) برای کاتالیز اکسیداسیون.
BIRM (Batalytic Iron Removal Media): ترکیب سیلیس و اکسید آهن.
پارامترهای طراحی:
سرعت فیلتراسیون: ۵–۱۵ m³/h/m².
شستشوی معکوس: با آب یا هوا برای احیای رسانه.
ج. اکسیداسیون شیمیایی
مواد شیمیایی:
کلر (Cl₂): اکسیداسیون سریع آهن و منگنز.
دوز: ۰.۶–۱.۲ mg Cl₂ به ازای هر mg آهن/منگنز.
پرمنگنات پتاسیم (KMnO₄): مؤثر برای منگنز.
واکنش:
۳Mn²⁺ + ۲KMnO₄ + ۲H₂O → ۵MnO₂↓ + ۲K⁺ + ۴H⁺
۳. روشهای نوین حذف آهن و منگنز
الف. فیلتراسیون غشایی (نانوفیلتراسیون/اسمز معکوس)
مکانیسم: حذف یونها با استفاده از غشاهای نیمهتراوا.
پارامترها:
شار غشا: ۱۰–۳۰ LMH (لیتر بر متر مربع در ساعت).
راندمان: > ۹۵% برای آهن و منگنز.
ب. تصفیه بیولوژیکی
مکانیسم: استفاده از باکتریهای اکسیدکننده (مثل Gallionella برای آهن و Leptothrix برای منگنز).
طراحی:
بیوراکتورهای هوازی: زمان ماند ۴–۸ ساعت، DO ≥ ۲ mg/L.
فیلترهای بیولوژیکی: استفاده از شن یا زغال به عنوان بستر رشد باکتری.
ج. اکسیداسیون پیشرفته (AOPs)
ترکیبات: UV/پراکسید هیدروژن (H₂O₂) یا ازون (O₃).
مکانیسم: تولید رادیکالهای OH· برای اکسیداسیون سریع.
د. رزینهای تبادل یونی
مکانیسم: جایگزینی یونهای آهن و منگنز با یونهای بیضرر (مانند Na⁺).
محدودیت: مناسب برای غلظتهای پایین (Fe < ۵ mg/L).
۴. محاسبات کلیدی
الف. محاسبه دوز کلر
فرمول:
دوز کلر (mg/L) = (غلظت آهن + غلظت منگنز) × ۱.۵
مثال: آهن = ۲ mg/L، منگنز = ۱ mg/L → دوز = ۴.۵ mg/L.
ب. محاسبه سطح فیلتر گرین سند
فرمول:
سطح (m²) = دبی (m³/h) / سرعت فیلتراسیون (m/h)
مثال: دبی ۱۰ m³/h، سرعت ۱۰ m/h → سطح = ۱ m².
ج. انرژی مورد نیاز AOPs
فرمول:
انرژی (kWh/m³) = (توان دستگاه (W) × زمان تماس (h)) / دبی (m³/h)
۵. طراحی سیستمها
الف. سیستم هوادهی + فیلتراسیون
اجزا:
هوادهی: برج پکینگ با دمنده هوا.
فیلتر: لایههای شن و گرین سند.
مصالح: فایبرگلاس (FRP) برای مقاومت در برابر خوردگی.
ب. سیستم بیولوژیکی
پارامترها:
بار آلی: ۰.۱–۰.۳ kg Fe/m³/day.
کنترل pH: ۶.۵–۷.۵ برای رشد بهینه باکتری.
ج. سیستم نانو فیلتراسیون
تجهیزات:
پمپ فشار بالا (۸–۲۰ bar).
غشاهای پلی آمیدی یا سلولزی.
۶. مقایسه روشها
روش مزایا معایب هزینه
هوادهی بدون مواد شیمیایی نیاز به فیلتراسیون تکمیلی کم
گرین سند مناسب برای غلظتهای بالا نیاز به احیای دورهای با KMnO₄ متوسط
بیوفیلتر سازگار با محیط زیست زمان راهاندازی طولانی متوسط
نانوفیلتراسیون حذف کامل یونها هزینه بالای انرژی و نگهداری بالا
۷. اجرا و چالشها
رسوبگیری: نیاز به شستشوی معکوس دورهای در فیلترها.
مدیریت لجن: لجن اکسید آهن/منگنز نیاز به خشککردن و دفع ایمن دارد.
تغییرات کیفیت آب: پایش مداوم pH و غلظت آهن/منگنز.
۸. مثال طراحی
شرایط:
دبی آب: ۵۰ m³/day
غلظت آهن: ۵ mg/L، منگنز: ۱ mg/L
روش انتخابی: هوادهی + فیلتر گرین سند.
محاسبات:
هوادهی: زمان تماس ۳۰ دقیقه → حجم مخزن = ۵۰ m³/day / ۲۴ ≈ ۲.۱ m³.
فیلتر گرین سند:
سرعت فیلتراسیون ۱۰ m/h → سطح = ۵۰/۲۴/۱۰ ≈ ۰.۲۱ m².
قطر فیلتر: (۰.۲۱ × ۴/π)√ ≈ ۰.۵ متر.
تجهیزات:
برج هوادهی با پکینگ پلی پروپیلن.
فیلتر گرین سند با سیستم شستشوی معکوس خودکار.
۹. نتیجهگیری
انتخاب روش حذف آهن و منگنز به عواملی مانند غلظت اولیه، هزینه، و پایداری محیطی بستگی دارد. روشهای سنتی مانند هوادهی و گرین سند برای سیستمهای کوچک و متوسط مناسب هستند، در حالی که فناوریهای نوین مانند نانو فیلتراسیون و AOPs برای آبهای با غلظت بسیار بالا یا نیاز به کیفیت ممتاز پیشنهاد میشوند. ترکیب روشها (مثل هوادهی + بیوفیلتر) میتواند راندمان را بهینه کند.
حذف سولفید هیدروژن (H₂S) در تصفیه آب و فاضلاب
روشهای سنتی و نوین حذف سولفید هیدروژن (H₂S) در تصفیه آب و فاضلاب:
۱. اهمیت حذف سولفید هیدروژن
سولفید هیدروژن (H₂S) گازی سمی با بوی تخم مرغ فاسد است که در فاضلاب و آبهای زیرزمینی یافت میشود.
خطرات: خوردگی لولهها، سمیت برای انسان و محیط زیست، ایجاد بو و طعم نامطبوع.
استانداردها:
آب شرب: حداکثر مجاز ۰.۰۵ mg/L (USEPA).
فاضلاب: بسته به کاربرد مجدد، معمولاً ≤ ۱ mg/L.
۲. روشهای سنتی حذف H₂S
الف. هوادهی (Aeration)
مکانیسم: انتقال H₂S از فاز مایع به گاز با استفاده از تماس هوا-آب.
طراحی:
برجهای هوادهی (Packed Towers): استفاده از پکینگ (مانند سرامیک یا پلاستیک) برای افزایش سطح تماس.
پارامترها:
نسبت هوا به آب (A/W): ۵–۲۰ (بر حسب حجم).
ارتفاع برج: ۳–۱۰ متر.
فرمول:
راندمان حذف = ۱ - e^(-KLa * t) KLa: ضریب انتقال جرم (h⁻¹)، t: زمان تماس (h).
ب. اکسیداسیون شیمیایی
مواد شیمیایی:
کلر (Cl₂): اکسیداسیون H₂S به سولفات (SO₄²⁻).
واکنش:
H₂S + ۴Cl₂ + ۴H₂O → H₂SO₄ + ۸HCl
دوز: ۸.۳۴ mg Cl₂ به ازای هر mg H₂S.
پراکسید هیدروژن (H₂O₂): اکسیداسیون به سولفات بدون باقیمانده مضر.
واکنش:
H₂S + ۴H₂O₂ → H₂SO₄ + ۴H₂O
دوز: ۲–۴ mg H₂O₂ به ازای هر mg H₂S.
ج. جذب سطحی (Activated Carbon)
مکانیسم: جذب H₂S روی سطح کربن فعال.
محدودیت: نیاز به تعویض مکرر کربن اشباعشده.
۳. روشهای نوین حذف H₂S
الف. اکسیداسیون پیشرفته (AOPs)
ترکیبات: ازون (O₃) + UV یا H₂O₂ + UV.
مکانیسم: تولید رادیکالهای آزاد (OH·) برای اکسیداسیون سریع.
پارامترها:
دوز ازون: ۱–۳ mg/L.
انرژی UV: ۴۰–۱۰۰ mJ/cm².
ب. تصفیه بیولوژیکی (Biofiltration)
مکانیسم: استفاده از باکتریهای اکسیدکننده سولفید (مثل Thiobacillus).
طراحی:
بیوراکتورهای هوازی: زمان ماند ۲–۶ ساعت، pH ۷–۸.
رسانه بیوفیلتر: پکینگ آلی (مانند کمپوست) یا مصنوعی.
ج. فیلترهای شیمیایی (Greensand)
مکانیسم: اکسیداسیون H₂S توسط منگنز اکسید (MnO₂) روی بستر شن سبز.
واکنش:
H₂S + MnO₂ → MnS + H₂O
بازسازی: شستشو با پرمنگنات پتاسیم (KMnO₄).
د. سیستمهای الکتروشیمیایی
مکانیسم: اکسیداسیون H₂S در آند و تولید گاز هیدروژن در کاتد.
ولتاژ: ۲–۵ ولت، جریان: ۱۰–۵۰ mA/cm².
۴. محاسبات کلیدی
الف. هوادهی
محاسبه ارتفاع برج (Z):
Z = (Q * (C_in - C_out)) / (KLa * A * (C_in - C_eq)) Q: دبی (m³/h)، C_eq: غلظت تعادلی H₂S (از قانون هنری).
ب. کلرزنی
مصرف کلر:
دوز کلر (kg/day) = (غلظت H₂S (mg/L) × دبی (m³/day) × ۸.۳۴) / ۱۰۰۰
ج. بیوفیلتر
بار سطحی (Loading Rate):
LR (kg H₂S/m³/day) = (غلظت ورودی × دبی) / حجم راکتور
۵. طراحی سیستمها
الف. هوادهی
اجزا:
پمپ آب، پکینگ برج، دمنده هوا.
مخزن جمعآوری گاز H₂S با فیلتر کربن فعال.
مصالح: فایبرگلاس یا استیل ضدزنگ برای جلوگیری از خوردگی.
ب. بیوراکتور هوازی
پارامترها:
اکسیژن محلول (DO) ≥ ۲ mg/L.
دما: ۲۰–۳۵°C.
تجهیزات: دیفیوزرهای حباب ریز، سیستم کنترل pH.
۶. مقایسه روشها
روش مزایا معایب هزینه
هوادهی بدون مواد شیمیایی راندمان پایین در غلظتهای بالا کم
کلرزنی سریع، مؤثرتشکیل محصولات جانبی (THMs) متوسط
بیوفیلتر سازگار با محیط زیست نیاز به کنترل دقیق شرایط متوسط
AOPs حذف کامل آلایندهها هزینه بالای تجهیزات بالا
۷. اجرا و چالشها
خطرات ایمنی: H₂S گازی سمی و قابل اشتعال است → نیاز به سیستمهای تهویه و حسگرهای گاز.
خوردگی: استفاده از مواد مقاوم (مثل PVC یا FRP) در تجهیزات.
مدیریت لجن: در روشهای شیمیایی، لجن حاوی گوگرد نیاز به دفع ایمن دارد.
۸. مثال طراحی
شرایط:
دبی فاضلاب: ۱۰۰ m³/day
غلظت H₂S ورودی: ۰.۱ mg/L → هدف: ≤ ۱۰ mg/L
روش انتخابی: کلرزنی.
محاسبات:
دوز کلر = mg/L۱۰ × ۸.۳۴ = ۸۳.۴ mg/L.
مصرف روزانه = (۸۳.۴ × ۱۰۰) / ۱۰۰۰ = ۸.۳۴ kg/day.
تجهیزات:
مخزن ۵۰۰ لیتری هیپوکلریت سدیم با پمپ دوزینگ.
مخزن تماس ۳۰ دقیقهای با میکسر.
۹. نتیجهگیری
انتخاب روش حذف H₂S به عواملی مانند غلظت اولیه، هزینه، و ملاحظات محیطزیستی بستگی دارد. روشهای سنتی مانند هوادهی و کلرزنی برای سیستمهای کوچک مناسب هستند، در حالی که فناوریهای نوین مانند AOPs و بیوفیلتراسیون برای غلظتهای بالا و نیاز به پایداری محیطی پیشنهاد میشوند. ترکیب روشها (مثل هوادهی + کلرزنی) میتواند راندمان را افزایش دهد.
حذف کلیفرمها در تصفیه آب و فاضلاب
روشهای سنتی و نوین حذف کلیفرمها در تصفیه آب و فاضلاب
۱. کلیفرمها و اهمیت حذف آنها
کلیفرمها (شاخص آلودگی مدفوعی) شامل باکتریهایی مانند E. coli هستند که نشانگر آلودگی آب به پاتوژنهای خطرناک (مانند وبا و حصبه) میباشند.
استانداردهای مجاز:
آب شرب: صفر کلیفرم در ۱۰۰ میلیلیتر (WHO/EPA).
فاضلاب تصفیهشده: ≤ ۱۰۰۰ MPN/100 mL (بر اساس کاربرد مجدد).
۲. روشهای سنتی حذف کلیفرمها
الف. کلرزنی (Chlorination)
مکانیسم: گندزدایی با واکنش کلر با دیواره سلولی باکتری.
پارامترهای کلیدی:
CT Value: غلظت کلر (mg/L) × زمان تماس (دقیقه) → حداقل ۱۵ mg·min/L برای حذف ۹۹.۹% کلیفرم.
باقیمانده کلر آزاد: ۰.۲–۰.۵ mg/L (برای جلوگیری از آلودگی ثانویه).
معایب: تشکیل ترکیبات جانبی سرطانزا (THMs، HAAs).
ب. جوشاندن (Boiling)
کاربرد: سیستمهای کوچک یا اضطراری.
شرایط: جوشاندن آب به مدت ۱ دقیقه (در سطح دریا) تا ۳ دقیقه (ارتفاعات بالا).
ج. فیلتراسیون شن (Sand Filtration)
مکانیسم: حذف فیزیکی باکتریها همراه با ذرات معلق.
راندمان: ۵۰–۹۰% (در صورت ترکیب با انعقاد).
۳. روشهای نوین حذف کلیفرمها
الف. پرتو فرابنفش (UV Disinfection)
مکانیسم: تخریب DNA باکتری با طول موج ۲۵۴ نانومتر.
پارامترهای طراحی:
دوز UV: حداقل ۴۰ mJ/cm² برای حذف ۹۹.۹۹% کلیفرم.
شفافیت آب: NTU < ۱ برای عبور مؤثر پرتو.
مزایا: عدم تشکیل ترکیبات جانبی، مناسب برای آبهای کم کدورت.
ب. فیلتراسیون غشایی (Membrane Filtration)
انواع:
اولترافیلتراسیون (UF): حذف ذرات > ۰.۰۱ μm.
نانوفیلتراسیون (NF) و اسمز معکوس (RO): حذف کامل باکتریها.
شار غشایی: ۵۰–۱۵۰ LMH (لیتر بر متر مربع در ساعت).
ج. الکتروکوآگولاسیون (Electrocoagulation)
مکانیسم: تولید یونهای فلزی (Al³⁺/Fe³⁺) با جریان الکتریکی برای لختهسازی و حذف باکتری.
ولتاژ: ۱۰–۵۰ ولت، زمان تماس: ۱۰–۳۰ دقیقه.
د. اکسیداسیون پیشرفته (AOPs)
ترکیبات: ازون/پراکسید هیدروژن (O₃/H₂O₂)، UV/کلر.
مکانیسم: تولید رادیکالهای آزاد (مانند OH·) برای تخریب دیواره سلولی.
۴. محاسبات کلیدی
الف. محاسبه دوز کلر
فرمول:
دوز کلر (mg/L) = (CT مورد نیاز) / زمان تماس (دقیقه)
مثال: CT = ۱۵ mg·min/L، زمان تماس = ۳۰ دقیقه → دوز = ۰.۵ mg/L.
ب. انرژی UV مورد نیاز
فرمول:
انرژی (mJ/cm²) = شدت تابش (μW/cm²) × زمان تماس (ثانیه)
مثال: شدت ۴۰۰ μW/cm²، زمان ۱۰۰ ثانیه → انرژی = ۴۰ mJ/cm².
ج. مساحت غشا در فیلتراسیون
فرمول:
سطح غشا (m²) = دبی (m³/day) / (شار غشایی (LMH) × ۲۴)
مثال: دبی ۱۰ m³/day، شار ۱۰۰ LMH → سطح ≈ ۴.۱۶ m².
۵. طراحی سیستمها
الف. سیستم UV
اجزا:
لامپهای UV-C در محفظه استیل ضدزنگ.
سیستم تمیزکننده خودکار (برای جلوگیری از رسوب).
نکات: نصب پس از فیلتراسیون برای کاهش کدورت.
ب. سیستم کلرزنی
تجهیزات:
مخزن ذخیره کلر (گاز/مایع).
مخزن تماس با زمان ماند ≥ ۳۰ دقیقه.
ج. سیستم الکتروکوآگولاسیون
طراحی:
سلول الکترولیتی با الکترودهای آلومینیوم/آهن.
منبع تغذیه DC با کنترل جریان.
۶. مقایسه روشها
روش مزایا معایب هزینه
کلرزنی ارزان ، باقیمانده محافظ تشکیل THMs کم
UV عدم ترکیبات جانبی وابسته به شفافیت آب متوسط
غشایی حذف کامل باکتریها هزینه بالای نگهداری بالا
الکتروکوآگولاسیون حذف همزمان فلزات سنگین مصرف انرژی بالا متوسط-بالا
۷. اجرا و چالشها
کلرزنی: مدیریت THMs با استفاده از کربن فعال یا جایگزینی کلرامین.
UV: پایش مداوم شدت لامپها و شفافیت آب.
غشایی: شستشوی معکوس (Backwash) دورهای برای جلوگیری از گرفتگی.
الکتروکوآگولاسیون: جایگزینی الکترودها به دلیل خوردگی.
۸. مثال طراحی
شرایط:
دبی فاضلاب: ۲۰۰ m³/day
روش انتخابی: ترکیبی از UV + کلرزنی.
محاسبات:
دوز UV: ۴۰ mJ/cm² → انتخاب دستگاه با توان ۸۰۰ W و زمان تماس ۶۰ ثانیه.
دوز کلر: ۰.۵ mg/L (برای باقیمانده محافظ) → مصرف روزانه: ۰.۱ kg/day.
تجهیزات:
محفظه UV با ۱۰ لامپ ۸۰ واتی.
مخزن ۵۰۰ لیتری هیپوکلریت سدیم با پمپ دوزینگ.
۹. نتیجهگیری
انتخاب روش حذف کلیفرمها به عواملی مانند هزینه، مقیاس سیستم، و ملاحظات محیط زیستی بستگی دارد. روشهای سنتی مانند کلرزنی برای سیستمهای بزرگ مقرونبهصرفه هستند، در حالی که فناوریهای نوین مانند UV و غشایی برای آبهای با کیفیت بالا و حساسیت بهداشتی مناسباند. ترکیب روشها (مثال: UV + کلر) میتواند ایمنی و راندمان را افزایش دهد.
حذف جلبک در تصفیه آب و فاضلاب
روشهای سنتی و نوین حذف جلبک در تصفیه آب و فاضلاب: طراحی، محاسبات و اجرا
۱. مقدمه
جلبکها به دلیل رشد سریع در حضور نور، مواد مغذی (نیتروژن و فسفر)، و آب گرم، چالش بزرگی در سیستمهای تصفیه آب و فاضلاب ایجاد میکنند. حذف آنها برای جلوگیری از گرفتگی فیلترها، کاهش کیفیت آب، و تولید ترکیبات سمی (مثل مایکروسیستین) ضروری است.
۲. روشهای سنتی حذف جلبک
الف. روشهای شیمیایی
۱. سولفات مس (CuSO₄):
مکانیسم: مختل کردن فتوسنتز و نابودی سلولهای جلبک.
دوز مصرف: ۰.۲–۰.۵ mg/L (بسته به گونه جلبک).
محدودیت: سمیت برای آبزیان و تجمع مس در محیط.
۲. کلرزنی:
مکانیسم: اکسیداسیون دیواره سلولی جلبک.
دوز مصرف: ۱–۵ mg/L (بسته به کدورت آب).
محدودیت: تشکیل ترکیبات جانبی سرطانزا (THMs).
۳. آلوم (سولفات آلومینیوم):
مکانیسم: لختهسازی و حذف جلبکها همراه با ذرات معلق.
دوز مصرف: ۱۰–۵۰ mg/L.
ب. روشهای فیزیکی
۱. فیلتراسیون (شن، کربن فعال):
کاربرد: حذف جلبکهای معلق.
طراحی: استفاده از فیلترهای چندلایه با سرعت جریان ۵–۱۵ m/h.
۲. هوادهی:
مکانیسم: کاهش مواد مغذی (فسفر) با اکسیداسیون.
اجرا: هوادهی عمقی با دیفیوزرهای حباب ریز.
۳. روشهای نوین حذف جلبک
الف. فناوریهای پیشرفته اکسیداسیون
۱. ازونزنی (O₃):
مکانیسم: تخریب دیواره سلولی جلبک با رادیکالهای آزاد.
دوز مصرف: ۱–۳ mg/L.
مزایا: عدم تشکیل لجن و حذف همزمان ترکیبات آلی.
۲. اولتراسونیک (Ultrasonic Treatment):
مکانیسم: ایجاد حفرههای ریز (Cavitation) برای تخریب سلولها.
انرژی مورد نیاز: ۲۰–۵۰ W/L به مدت ۱۰–۳۰ دقیقه.
ب. روشهای بیولوژیکی
۱. زیستکنترل (Bio-control):
استفاده از موجودات رقیب: مانند دافنی (کک آبی) یا باکتریهای جلبکخوار.
محدودیت: نیاز به شرایط زیستمحیطی خاص.
۲. گیاهپالایی (Phytoremediation):
استفاده از گیاهان آبزی: مانند نی (Phragmites) برای جذب مواد مغذی.
ج. فناوری نانو
۱. نانوذرات اکسید فلزی (مثل TiO₂):
مکانیسم: تولید رادیکالهای آزاد تحت نور UV برای تخریب جلبک.
دوز مصرف: ۰.۱–۰.۵ g/L.
۲. نانوفیلترها:
کاربرد: حذف انتخابی جلبکها با اندازه منافذ ۱۰–۱۰۰ نانومتر.
۴. محاسبات کلیدی
الف. محاسبه دوز مواد شیمیایی
فرمول پایه:
دوز (mg/L) = (غلظت هدف × حجم آب) / خلوص ماده
مثال: برای حذف جلبک با سولفات مس (غلظت هدف ۰.۳ mg/L، حجم آب ۱۰۰۰ m³، خلوص ۹۸%):
دوز = (۰.۳ × ۱,۰۰۰,۰۰۰) / ۰.۹۸ ≈ ۳۰۶ mg/m³ ≈ ۰.۳۰۶ kg/day
ب. انرژی مورد نیاز اولتراسونیک
فرمول:
انرژی (kWh) = (توان دستگاه (W) × زمان (h)) / ۱۰۰۰
مثال: دستگاه ۵۰۰ W برای ۳۰ دقیقه:
انرژی = (۵۰۰ × ۰.۵) / ۱۰۰۰ = ۰.۲۵ kWh
۵. طراحی سیستمها
الف. سیستم شیمیایی
تجهیزات: مخازن ذخیره مواد شیمیایی، پمپهای دوزینگ، میکسرهای سریع.
اجرا: تزریق ماده شیمیایی در ابتدای فرآیند تصفیه (قبل از لختهسازی).
ب. سیستم اولتراسونیک
پارامترهای طراحی:
فرکانس امواج: ۲۰–۴۰ kHz (بهینه برای حفرهسازی).
تعداد مبدلها: بر اساس حجم آب و شدت آلودگی.
اجرا: نصب مبدلها در کانالهای ورودی یا مخازن ذخیره.
ج. سیستم نانوذرات
طراحی:
تزریق نانوذرات در مخزن واکنش با زمان ماند ۱–۲ ساعت.
استفاده از لامپ UV برای فعالسازی نانوذرات TiO₂.
۶. مقایسه روشهای سنتی و نوین
روش مزایا معایب
سولفات مس ارزان، سریع سمیت زیستمحیطی
کلرزنی باقیمانده گندزدا تشکیل THMs
ازونزنی عدم لجن، حذف ترکیبات آلی هزینه بالا
اولتراسونیک عدم نیاز به مواد شیمیایی مصرف انرژی بالا
نانوذرات راندمان بالا در دوز کم هزینه اولیه بالا
۷. اجرا و چالشها
روشهای سنتی:
چالش: مدیریت لجن و باقیمانده مواد شیمیایی.
اجرا: نیاز به پایش مداوم pH و دوز مواد.
روشهای نوین:
چالش: هزینه بالای تجهیزات و نیاز به نیروی متخصص.
اجرا: یکپارچهسازی با سیستمهای موجود (مثل ترکیب UV و نانوذرات).
۸. نمونه طراحی عملی
شرایط:
حجم آب: ۵۰۰ m³/day
روش انتخابی: ترکیبی از آلوم (۲۰ mg/L) و اولتراسونیک (۳۰ دقیقه با ۴۰ kHz).
محاسبات:
دوز آلوم: m³ ۵۰۰× ۲۰ mg/L = ۱۰ kg/day.
انرژی اولتراسونیک: W ۵۰۰ × ۰.۵ h = ۲۵۰ Wh/day.
تجهیزات:
مخزن ۲۰۰ لیتری آلوم با پمپ دوزینگ.
دستگاه اولتراسونیک با ۱۰ مبدل ۵۰ واتی.
۹. نتیجهگیری
انتخاب روش حذف جلبک به عواملی مانند هزینه، راندمان، و ملاحظات محیط زیستی بستگی دارد. روشهای سنتی مانند سولفات مس و کلرزنی به دلیل هزینه پایین هنوز پرکاربرد هستند، اما روشهای نوین مانند اولتراسونیک و نانوذرات با وجود هزینه اولیه بالا، سازگاری بیشتری با محیط زیست دارند. ترکیب روشها (مثل استفاده همزمان از آلوم و UV) میتواند بازدهی را افزایش دهد.
گندزدایی در تصفیه آب و فاضلاب
گندزدایی در تصفیه آب و فاضلاب: روشها، محاسبات
۱. اهمیت گندزدایی
حذف پاتوژنها: باکتریها، ویروسها، و انگلها (مانند اشرشیاکلی، کوکسیدیوم).
پیشگیری از بیماریها: وبا، حصبه، و اسهالهای عفونی.
مطابقت با استانداردها: رعایت حد مجاز باقیمانده مواد گندزدا (مثل کلر باقیمانده ≤ ۰.۲–۰.۵ mg/L).
۲. روشهای گندزدایی
الف. روشهای شیمیایی
۱. کلرزنی (Cl₂, NaOCl, Ca(OCl)₂):
مزایا: ارزان، باقیمانده مؤثر، گسترده در سیستمهای شهری.
معایب: تشکیل ترکیبات جانبی سرطانزا (THMs، HAAs).
فرمول واکنش:
Cl₂ + H₂O → HOCl + HCl HOCl → H⁺ + OCl⁻ (گندزدایی مؤثر در pH < ۸)
۲. ازون (O₃):
مزایا: قدرت اکسیداسیون بالا، عدم تشکیل باقیمانده شیمیایی.
معایب: هزینه بالا، نیمهعمر کوتاه (نیاز به تزریق در محل).
فرمول واکنش:
O₃ → O₂ + O· (رادیکال آزاد اکسیژن)
۳. کلرآمینها (NH₂Cl):
مزایا: کاهش تشکیل THMs، باقیمانده پایدار.
معایب: قدرت گندزدایی کمتر نسبت به کلر آزاد.
۴. دیاکسید کلر (ClO₂):
مزایا: عدم تشکیل THMs، مؤثر در حذف ویروسها.
معایب: خطر انفجار در غلظت بالا.
ب. روشهای فیزیکی
۱. پرتو فرابنفش (UV):
مکانیسم: آسیب به DNA پاتوژنها با طول موج ۲۵۴ نانومتر.
مزایا: عدم تشکیل ترکیبات جانبی، مناسب برای آبهای کم کدورت.
معایب: نیاز به آب شفاف، عدم باقیمانده گندزدا.
۲. گرمایش (پاستوریزاسیون):
کاربرد: سیستمهای کوچک یا روستایی.
۳. محاسبات کلیدی
الف. دوز گندزدا
فرمول پایه (CT Value):
CT = غلظت گندزدا (mg/L) × زمان تماس (دقیقه)
مثال: برای حذف ۹۹.۹% ویروسها با کلر (CT ≈ ۱۵ mg·min/L).
ب. محاسبه باقیمانده کلر
فرمول:
باقیمانده کلر = دوز تزریقشده – مصرفشده در واکنش با آلایندهها
ج. انرژی UV مورد نیاز
فرمول:
انرژی (mJ/cm²) = شدت تابش (μW/cm²) × زمان تماس (ثانیه)
حداقل انرژی برای گندزدایی: ۴۰ mJ/cm² (برای باکتریها).
۴. طراحی سیستمهای گندزدایی
الف. کلرزنی
مخزن تماس: زمان ماند ≥ ۳۰ دقیقه برای اطمینان از CT کافی.
تجهیزات:
سیستم تزریق گاز کلر (فشار پایین).
مخازن ذخیره هیپوکلریت سدیم.
ب. سیستم UV
پارامترهای طراحی:
شفافیت آب: NTU < ۱ برای عبور مؤثر پرتو.
تعداد لامپها: بر اساس دبی و انرژی مورد نیاز.
اجزای سیستم:
محفظه استیل ضدزنگ با لامپهای UV.
سیستم تمیزکننده خودکار (برای جلوگیری از رسوب).
ج. ازونزنی
ژنراتور ازون: تولید ازون با تخلیه الکتریکی یا تابش UV.
مخزن تماس: زمان تماس ≈ ۱۰–۲۰ دقیقه.
۵. مقایسه روشهای گندزدایی
روش مزایا معایب کاربرد
کلرزنی ارزان ، باقیمانده مؤثرتشکیل THMs، خطر سمیت شبکههای آب شهری
UV عدم ترکیبات جانبی نیاز به آب شفاف بیمارستانها، صنایع دارویی
ازون قدرت اکسیداسیون بالا هزینه بالا ، نیمهعمر کوتاه استخرهای شنا ، آب بطری
کلرآمینها کاهش THMs قدرت گندزدایی کمتر سیستمهای توزیع طولانی
۶. اجرا و چالشها
کلرزنی:
خطرات: نشت گاز کلر (نیاز به سیستمهای ایمنی).
مدیریت THMs: استفاده از کربن فعال یا اصلاح pH.
UV:
رسوب بر لامپها: نیاز به تمیزکاری دورهای.
ازون:
تولید در محل: نیاز به تجهیزات پیچیده.
۷. پیشرفتهای نوین
گندزدایی ترکیبی: استفاده همزمان از UV + کلر برای کاهش THMs.
فناوری پلاسما: تولید رادیکالهای آزاد برای گندزدایی سریع.
نانوفتوکاتالیستها: استفاده از TiO₂ تحت UV برای تخریب آلایندهها.
۸. مثال طراحی
شرایط:
دبی آب: ۵۰۰ m³/day
روش گندزدایی: کلرزنی با هیپوکلریت سدیم (غلظت ۱۰% کلر).
CT مورد نیاز: ۱۵ mg·min/L.
محاسبات:
زمان تماس: ۳۰ دقیقه → غلظت کلر = CT / زمان = ۱۵ / ۳۰ = ۰.۵ mg/L.
دوز هیپوکلریت سدیم: (۰.۵ mg/L) / (۰.۱) = ۵ mg/L.
مصرف روزانه: m³/day ۵۰۰ × ۵ mg/L = ۲.۵ kg/day.
تجهیزات:
مخزن ۱۰۰۰ لیتری هیپوکلریت سدیم.
پمپ دوزینگ با دقت ±۰.۱ mg/L.
۹. نتیجهگیری
انتخاب روش گندزدایی به عواملی مانند هزینه، کیفیت آب، و استانداردهای بهداشتی بستگی دارد. کلرزنی هنوز پرکاربردترین روش است، اما فناوریهایی مانند UV و ازون به دلیل ایمنی و کاهش ترکیبات جانبی در حال گسترش هستند. پایش مداوم باقیمانده گندزدا و تطابق با استانداردهای جهانی کلید موفقیت است.
هوادهی در تصفیه آب و فاضلاب
واحد هوادهی در تصفیه آب و فاضلاب: کاربرد، محاسبات، انواع، شیوه ساخت و اجرا، طراحی، شباهتها و تفاوتها
۱. کاربرد واحد هوادهی
واحد هوادهی در تصفیه آب و فاضلاب به دلایل زیر استفاده میشود:
تأمین اکسیژن: برای فعالسازی فرآیندهای بیولوژیکی (مانند لجن فعال) و تجزیه مواد آلی.
حذف گازهای نامطلوب: مانند دیاکسید کربن (CO₂)، سولفید هیدروژن (H₂S) و متان (CH₄).
اکسیداسیون شیمیایی: تبدیل آهن و منگنز محلول به شکل نامحلول برای حذف توسط فیلتراسیون.
اختلاط: جلوگیری از رسوب مواد جامد در حوضچههای تصفیه.
۲. انواع سیستمهای هوادهی
۲.۱. هوادهی عمقی (Submerged Aeration)
دیفیوزرهای حباب ریز (Fine Bubble Diffusers):
مکانیسم: تولید حبابهای ریز (۱–۳ میلیمتر) برای انتقال اکسیژن با راندمان بالا.
مواد: EPDM، سیلیکون یا پلی اورتان.
کاربرد: فاضلاب شهری و صنعتی با بار آلی بالا.
دیفیوزرهای حباب درشت (Coarse Bubble Diffusers):
مکانیسم: تولید حبابهای بزرگ (۵–۱۰ میلیمتر) برای اختلاط شدید.
کاربرد: حوضچههای لجن فعال با نیاز به اختلاط قوی.
۲.۲. هوادهی سطحی (Surface Aeration)
هوادههای مکانیکی (Mechanical Aerators):
پرههای چرخان (Rotating Blades): ایجاد تلاطم سطحی برای جذب اکسیژن.
جت هوادهی (Jet Aerators): تزریق هوا با فشار بالا به داخل آب.
کاربرد: استخرهای اکسیداسیون و لاگونهای هوازی.
۲.۳. هوادهی با فشار (Pressure Aeration)
برجهای هوادهی (Packed Towers):
مکانیسم: عبور آب از میان سطوح پرکننده (Packings) در جریان معکوس با هوا.
کاربرد: حذف گازهای فرار (CO₂، H₂S) در تصفیه آب.
۳. محاسبات کلیدی
۳.۱. نیاز اکسیژن (Oxygen Requirement, OUR)
OUR=Q×(S0−Se)×1.42 (kg O₂/day)
Q: دبی فاضلاب (m³/day).
S0: BOD ورودی (mg/L).
Se: BOD خروجی (mg/L).
۳.۲. انتقال اکسیژن (Oxygen Transfer Rate, OTR)
OTR=SOTR×α×(β×Cs−C)×θ^(T−20)
SOTR: انتقال اکسیژن استاندارد (kg O₂/h).
α: ضریب تصحیح برای فاضلاب (۰.۳–۰.۸).
β: ضریب تصحیح شوری (معمولاً ≈ ۱).
Cs: غلظت اشباع اکسیژن در آب (mg/L).
C: غلظت اکسیژن محلول (mg/L).
θ: ضریب دمایی (۱.۰۲۴).
۳.۳. حجم هوای مورد نیاز
Air Flow=(OUR)/(OTE×۰.۲۷۵ )(Nm³/h)
OTE: راندمان انتقال اکسیژن (معمولاً ۱۵–۳۵٪ برای دیفیوزرهای حباب ریز).
۴. شیوه ساخت و اجرا
۴.۱. هوادهی عمقی (دیفیوزرها)
۱. نصب دیفیوزرها:
قرارگیری دیفیوزرها در کف حوضچه با فاصله ۰.۵–۱ متر.
اتصال به لولههای اصلی هوا از جنس PVC یا استیل.
۲. سیستم هوادهی:کمپرسورهای هوا (Blowers) با فشار ۰.۵–۱ بار.
فیلترهای هوا برای جلوگیری از گرفتگی دیفیوزرها.
۳. کنترل:استفاده از فلومتر و سنسورهای DO برای تنظیم دبی هوا.
۴.۲. هوادهی سطحی (پرههای چرخان)
۱. نصب موتور و پره:
مونتاژ پرههای فولادی روی شفت عمودی.
نصب موتور الکتریکی با توان ۵–۵۰ اسب بخار.
۲. اجرا:تنظیم سرعت چرخش برای ایجاد تلاطم بهینه.
۵. طراحی واحد هوادهی
انتخاب نوع هواده: بر اساس بار آلی، عمق حوضچه و هزینه عملیاتی.
محاسبه تعداد دیفیوزرها:
N=(OTR هر دیفیوزر)/(OTR مورد نیاز))عمق بهینه حوضچه: ۴–۶ متر برای افزایش راندمان انتقال اکسیژن.
ملاحظات انرژی: انتخاب کمپرسورهای با راندمان بالا (Turbo Blowers).
۶. شباهتها و تفاوتها
معیارتصفیه آب تصفیه فاضلاب
هدف اصلی حذف گازها و اکسیداسیون مواد معدنیتأمین اکسیژن برای تجزیه مواد آلی
نیاز به اکسیژن کم (معمولاً < ۲ mg/L)بالا (معمولاً ۲–۸ mg/L)
نوع هوادهی غالب برجهای هوادهی یا جتدیفیوزرهای حباب ریز یا پرههای چرخان
راندمان انتقال اکسیژن۸۰–۹۰٪ (در برجهای هوادهی)۱۵–۳۵٪ (در دیفیوزرها)
هزینه عملیاتی پایین (به دلیل نیاز به هوادهی کمتر)بالا (به دلیل مصرف انرژی زیاد)
۷. استانداردها و ملاحظات
استانداردهای طراحی:
ASCE 18-96: استاندارد طراحی سیستمهای هوادهی.
EPA 625/1-74-006: راهنمای انتقال اکسیژن در فاضلاب.
کاهش مصرف انرژی:
استفاده از هوادههای با راندمان بالا (مثل دیفیوزرهای دیسکی).
بازیابی انرژی از کمپرسورها.
واحد هوادهی یکی از مهمترین بخشهای فرآیندهای بیولوژیکی است که طراحی بهینه آن تأثیر مستقیمی بر راندمان تصفیه و هزینههای عملیاتی دارد. انتخاب بین سیستمهای عمقی و سطحی به عواملی مانند عمق حوضچه، نوع آلاینده و بودجه پروژه بستگی دارد.
تصفیه شیمیایی فاضلاب
تصفیه شیمیایی فاضلاب، واحدها، روشها، محاسبات، ساخت و شیوه اجرا
۱. مقدمه
تصفیه شیمیایی فاضلاب با استفاده از واکنشهای شیمیایی برای حذف آلایندهها (مانند مواد آلی، فلزات سنگین، و عوامل بیماریزا) انجام میشود. این روشها معمولاً در ترکیب با فرآیندهای فیزیکی یا بیولوژیکی استفاده میشوند.
۲. انواع روشهای تصفیه شیمیایی
۲.۱. انعقاد و لختهسازی (Coagulation & Flocculation)
هدف: حذف ذرات ریز معلق و کلوئیدی.
مواد شیمیایی:
منعقدکنندهها (Coagulants): آلوم (Al₂(SO₄)₃)، کلروفریک (FeCl₃)، پلیآلومینیوم کلراید (PAC).
لختهسازها (Flocculants): پلیآکریل آمید (PAM).
واحدها:
مخزن اختلاط سریع (Rapid Mix Tank): تزریق منعقدکننده با سرعت بالا (G ≥ ۳۰۰ s⁻¹).
مخزن لختهسازی (Flocculation Basin): اختلاط آهسته (G = ۲۰–۸۰ s⁻¹) برای تشکیل لخته.
حوضچه تهنشینی (Clarifier): جداسازی لخته.
محاسبات:
دوز منعقدکننده: دوز (mg/L)=(mg/L)راندمان انعقاد/(غلظت آلاینده)
زمان ماند: ۱–۲ دقیقه در اختلاط سریع، ۱۵–۳۰ دقیقه در لختهسازی.
۲.۲. رسوبسازی شیمیایی (Chemical Precipitation)
هدف: حذف فلزات سنگین (مانند کروم، سرب، روی) و فسفر.
مواد شیمیایی:
آهک (Ca(OH)₂): برای رسوب فلزات به صورت هیدروکسید.
سولفید سدیم (Na₂S): برای تشکیل سولفیدهای فلزی.
واحدها:
مخزن تنظیم pH: افزودن آهک یا اسید برای رسیدن به pH بهینه (معمولاً ۸–۱۱).
مخزن رسوبسازی: تشکیل رسوب.
فیلتر پرس یا سانتریفیوژ: جداسازی رسوبات.
محاسبات:
مقدار آهک: دوز (kg)=راندمان/(غلظت فلز (mg/L)×Q×۰.۰۰۱)
pH مورد نیاز: بسته به نوع فلز (مثلاً pH ≈ ۹ برای رسوب آهن).
۲.۳. اکسیداسیون شیمیایی (Chemical Oxidation)
هدف: تجزیه مواد آلی سمی (مانند فنل، سیانید) و گندزدایی.
مواد شیمیایی:
کلر (Cl₂)، ازن (O₃)، پراکسید هیدروژن (H₂O₂)، پتاسیم پرمنگنات (KMnO₄).
فرآیندهای اکسیداسیون پیشرفته (AOPs): ترکیب ازن/UV، Fenton (H₂O₂ + Fe²⁺).
واحدها:
راکتور اکسیداسیون: تماس فاضلاب با اکسیدان.
سیستم تزریق گاز (برای ازن یا کلر).
محاسبات:
نیاز اکسیدان: دوز (mg/L)=راندمان/(غلظت آلاینده (mg/L)×ضریب استوکیومتری)
زمان تماس: ۱۵–۶۰ دقیقه بسته به نوع آلاینده.
۲.۴. تبادل یونی (Ion Exchange)
هدف: حذف یونهای فلزی (مانند کلسیم، منیزیم، نیترات).
مواد: رزینهای تبادل یونی (کاتیونی یا آنیونی).
واحدها:
ستون تبادل یونی: پر از رزین.
سیستم احیا: استفاده از اسید (HCl) یا نمک (NaCl) برای احیای رزین.
محاسبات:
ظرفیت رزین: (eq/L)=۱۰۰۰/(بار یونی (meq/g)×چگالی رزین (g/L)(eq/L))
زمان چرخه: (h)=(بار یونی ورودی (eq/h))/(ظرفیت رزین (eq/L)×حجم رزین (L)).
۲.۵. گندزدایی (Disinfection)
هدف: حذف پاتوژنها (باکتریها، ویروسها).
مواد شیمیایی:
کلر، دی اکسید کلر، ازن، UV.
واحدها:
مخزن تماس کلر: زمان تماس ۱۵–۳۰ دقیقه.
سیستم UV: لامپهای فرابنفش در کانال.
محاسبات:
CT Value: CT=غلظت (mg/L)×زمان تماس (min)
دوز UV: (mJ/cm²)=((s)سطح (cm²))/(انرژی لامپ (W)×زمان)
۳. ساخت و شیوه اجرا
۳.۱. مراحل ساخت واحدهای شیمیایی
۱. طراحی:
تعیین دوز مواد شیمیایی بر اساس آنالیز فاضلاب.
انتخاب جنس تجهیزات (فولاد ضدزنگ، PVC، بتن پوششدار).
۲. ساخت:نصب مخازن اختلاط، پمپهای تزریق، و سیستمهای کنترل.
ساخت راکتورهای مقاوم در برابر خوردگی (برای اسیدها یا بازها).
۳. راهاندازی:کالیبراسیون پمپهای تزریق و سنسورهای pH/ORP.
تست عملکرد با دوزهای پایین و افزایش تدریجی.
۳.۲. چالشهای اجرایی
خوردگی تجهیزات: استفاده از مواد مقاوم مانند Hastelloy یا تفلون.
مدیریت پسماندهای شیمیایی: جمعآوری و دفع لجنهای خطرناک مطابق استانداردهای EPA.
اتوماسیون: نصب سیستمهای کنترل پیالسی (PLC) برای تنظیم دوز.
۴. مثال کاربردی
تصفیه فاضلاب صنعتی حاوی کروم:
مراحل:
۱. تنظیم pH به ۲–۳ با اسید سولفوریک.
۲. اکسیداسیون کروم III به VI با بیسولفیت سدیم.
۳. رسوبسازی با آهک در pH ≈ ۸.۵.
۴. فیلتراسیون و دفع لجن.مواد مصرفی: H₂SO₄, NaHSO₃, Ca(OH)₂.
۵. ملاحظات زیستمحیطی
کاهش مصرف مواد شیمیایی: بازیافت مواد (مانند احیای رزین).
استانداردهای خروجی: رعایت حد مجاز BOD، COD، TSS و فلزات سنگین.
انرژیدهی سبز: استفاده از اکسیدانهای طبیعی یا انرژی خورشیدی در AOPs.
تصفیه شیمیایی یک ابزار قدرتمند برای حذف آلایندههای پیچیده است، اما نیاز به طراحی دقیق، مدیریت مواد شیمیایی و رعایت الزامات ایمنی دارد. انتخاب روش مناسب به نوع آلاینده، هزینه و مقررات محلی بستگی دارد.