گاز کروماتوگرافی ( GC )
از گاز کروماتوگرافی ( GC ) براي شناسايي و تعيين مقدار انجام مي شود. در گاز کروماتوگرافی ( GC ) با دو فاز سر و كار داريم : فاز ساكن و فاز متحرك ، فاز متحرك يك گاز است و فاز ساكن مي تواند مايع يا جامد باشد. فاز متحرك هيچ نقشي در جداسازي ندارد و يكي از تفاوت هاي GC با HPLC همين موضوع است. در HPLC فاز متحرك يك مايع است كه در جداسازي نقش دارد. تنها نقش فاز متحرك در GC حمل مواد به جلو و خارج كردن آنها از ستون است. به همين دليل كيفيت جداسازي در HPLC بهتر است از GC.
ابتدا نمونه را توسط سرنگ داخل injector تزريق مي كنيم. نمونه پس از ورود به injector به بخار تبديل شده و با فاز متحرك مخلوط شده ، وارد ستون مي شود. نمونه جذب ستون مي شود و در زمانهاي مختلف به وسيله گاز بي اثر از ستون بيرون مي آيد و وارد دتكتور مي شود. ستون قلب دستگاه است زيرا عمل اصلي كه جداسازي است در آنجا انجام مي شود. دتكتور شناسايي را انجام مي دهد جهت شناسايي مواد با GC از Rt) Retention time ) استفاده مي شود. Retention time زماني است كه طول مي كشد تا جسم از دتكتور بيرون بيايد ، يعني از زمان تزريق نمونه تا زمان ظاهرشدن پيك ها روي دستگاه كه براي يك ماده تحت شرايط ثابت ، مقداري ثابت است. بنابراين از مقايسه Rt معلوم با Rt مجهول، مي توان اجزاي موجود در مجهول را تشخيص داد.
اگر مجهول و استاندارد، Rt يكسان داشتند، مي توان نتيجه گرفت كه هر دو نمونه يكي هستند.
ويسكوزيته ( لزجت )
ويسكوزيته ( لزجت ) خاصيتي است كه سيال به وسيله آن در مقابل تنش برشي مقاومت مي كند. با افزايش دما لزجت گازها افزايش مي يابد اما لزجت مايعات كاهش مي يابد اين تفاوت را مي توان با بررسي عوامل لزجت توضيح داد.
هر فازي در مقابل حرکت توده هاي خود داراي مقاومت مي باشد . اين مقاومت براي فاز گاز ناچيز و براي فاز جامد خيلي زياد مي باشد . مايعات نيز در برابر حرکت لايه هاي خود از خود مقاومت نشان مي دهند .
لزجت سيالات يعني مقاومت آنها به تنش برشي ناشي از دو عامل است:
1- نيروي جاذبه مولكولي
2- تبادل مومنتوم مولكولي
براي مايعات بيشتر تحقيقات بر عبور مايع در لوله ها معطوف شده است و بيشتر روابط موجود نيز براي مايعات با سرعتهاي مختلف در لاله ها با قطر و زبريهاي متفاوت بدست آمده اند. حرکت يک مايع در درون لوله مي تواند شامل سه بخش عمده باشد :
1- حرکت آرام ( Laminar Flow ) در اين نوع حرکت لايه هاي مايع به آرامي برروي هم مي لغزند و حرکت مايع ادامه مي يابد طول اين ناحيه بنا به سرعت اوليه مايع يا زبري سطح لوله مي تواند کوتاه يا بلند باشد.
2- ناحيه گذار ( Transition Zone ) در اين ناحيه حرکت آرام مايع کم کم به حرکت اغتشاشي تبديل مي گردد و معمولاٌ طول اين ناحيه بسيار کوتاه است.
3
کروماتوگرافی
کروماتوگرافی بر اصول کل پخش فاز بنیان نهاده شده است. به طور خلاصه، در این روش جریان یک فاز از کنار (یا از داخل) فاز ساکنی میگذرد و در این حال فاز ساکن اجزای آنرا به طور انتخابی خارج میکند. این خروج یک عمل تعادلی است و مولکولهای اجزاء دوباره داخل فاز متحرک میشوند. هنگامی که ثابت پخش دو یا چند جزء در این دو فاز با هم متفاوت باشند، اجزای مربوط در فاز متحرک میشوند. هنگامی که ثابت پخش دو یا چند جزء در این دو فاز با هم متفاوت باشند، اجزای مربوط در فاز متحرک از هم تفکیک میشوند. به طور ساده میتوان گفت که هر چه فاز ساکن یک جزء را محمتر نگه دارد، در صد مولکولهای جزئی که بی حرکت نگه داشته شده بیشتر میشود. جزء دیگری که با شدت کمتر نگه داشته میشود نسبت به جزء اول در فاز متحرک درصد مولکولی بیشتری خواهد داشت. بنابراین به طور متوسط مولکولهای جزئی که با شدت کمتر نگه داشته میشوند، نسبت به مولکولهای دیگر با سرعت بیشتری از روی فاز ساکن میگذرند (در جهت جریان) و در نتیجه اجزای مربوط به قسمتهای مختلف فاز ساکن (باندها) منتقل میشوند.
فاصله باندها به طور خطی به مسافتی که در ستون طی میشود بستگی دارد. به طور کلی هر چه مسافت طی شده بیشتر باشد، فاصله باندها زیادتر خواهد شد. یادآور میشود که اجزای مخلوط باید ضرایب پخش متفاوتی داشته باشند تا بتوان آنها را به کمک پخش فاز تفکیک کرد. در صورتی که این ضرایب به هم نزدیک باشند، اجزای مربوط فقط به طور جزئی به باندهای جداگانه تفکیک میشوند. البته میتوان طول مسیر را زیاد کرد و به اجزاء فرصت داد تا بیشتر از هم جدا شوند.
پلاريمتري ( Polarimetry )
مقدار چرخش (الفا) با غلظت جسم (C) متناسب است. و يا می توان گفت نور پلاريزه وقتی از ترکيبات نامتقارن عبور کند، به علت پخش نامتقارن دانسيته الكتروني در مولكول، الكترونهاي مولكول بطور نامتقارن بر نور پلاريزه اثر مي گذارند و باعث چرخش آن حول محور انتشار مي شوند. مولكولهائي كه فعاليت نوري ندارند چون با پخش الكتروني متقارن مواجه هستند بر نور پلاريزه اثر ندارند.
شناخت انواع پمپ
پُمپ یا تُلُمبه وسیله ای مکانیکی برای انتقال مایعات است که با افزایش فشار جریان آن، امکان جابه جایی مایعات را به ارتفاعی بالاتر (با افزایش هد) یا حتی پایین دست (معمولاً حوضچه یا مخزن) فراهم می آورد.
به طور کلی پمپ به دستگاهی گفته می شود که انرﮊی مکانیکی را از یک منبع خارجی اخذ و به سیال مایعی که از آن عبور می کند، انتقال می دهد. در نتیجه انرﮊی سیال پس از خروج از این دستگاه (پمپ) افزایش می یابد. از پمپ ها برای انتقال سیال به یک ارتفاع معین و یا جا به جایی آن در یک سیستم لوله کشی و یا هیدرولیک استفاده می نمایند. به عبارت کلی تر از پمپ برای انتقال سیال از یک نقطه به نقطه دیگر استفاده می کنند. پمپ ها دارای انواع مختلفی هستند که هرکدام دارای کاربرد خاصی می باشند. مهم ترین پمپ هایی که در این واحد استفاده شده اند عبارت اند از:
1. پمپ های سانتریفوﮊ.
2. پمپ های رفت و برگشتی.
3. پمپ های چرخ دنده ای.
پمپ های سانتریفوﮊ:
پمپ سانتریفیوژاین پمپ ها از نوعی می باشند که انتقال انرﮊی از آنها به سیال به طور دائمی انجام می پذیرد. پمپ های سانتریفوﮊ معمولاً نیروی محرکه خود را از طریق یک الکترو موتور (موتور الکتریکی) دریافت می کنند. انتقال نیروی محرکه از موتور به پمپ از طریق یک محور به نام شَفت منتقل می شود. شفت موتور به وسیله نوعی تجهیزات مکانیکی به نام کوپلینگ به شَفت پمپ متصل شده است. به این ترتیب انتقال نیرو به راحتی از طریق شفت موتور الکتریکی به شفت پمپ منتقل می گردد.
پلاستیك های زیستی
اطرافمان انباشته از پلاستیك شده است. هر كاری كه انجام می دهیم و هر محصولی را كه مصرف می كنیم، از غذایی كه می خوریم تا لوازم برقی به نحوی با پلاستیك سروكار داشته و حداقل در بسته بندی آن از این مواد استفاده شده است. در كشوری مثل استرالیا سالانه حدود یك میلیون تن پلاستیك تولید می شود كه ۴۰ درصد آن صرف مصارف داخلی می شود. در همین كشور هرساله حدود ۶ میلیون بسته یا كیسه پلاستیكی مصرف می شود. گرچه بسته بندی پلاستیكی با قیمتی نازل امكان حفاظت عالی از محصولات مختلف خصوصاً مواد غذایی را فراهم می كند ولی متاسفانه معضل بزرگ زیست محیطی حاصل از آن گریبان گیر بشریت شده است. اكثر پلاستیك های معمول در بازار از فرآورده های نفتی و ذغال سنگ تولید شده و غیرقابل بازگشت به محیط هستند و تجزیه آنها و برگشت به محیط چند هزار سال طول می كشد. به منظور رفع این مشكل، محققان علوم زیستی در پی تولید پلاستیك های زیست تخریب پذیر از منابع تجدیدشونده مثل ریزسازواره ها و گیاهان هستند.
واژه زیست تخریب پذیر یا Biodegradable به معنی موادی است كه به
سادگی توسط فعالیت موجودات زنده به زیرواحدهای سازنده خود تجزیه
شده و بنابراین در محیط باقی نمی مانند. استانداردهای متعددی برای
تعیین زیست تخریب پذیری یك
محصول وجود دارد كه عمدتاً به تجزیه ۶۰ تا ۹۰ درصد از محصول در
مدت دو تا شش ماه محدود می شود. این استاندارد در كشورهای مختلف
متفاوت است. اما دلیل اصلی زیست تخریب پذیر نبودن پلاستیك های
معمولی، طویل بودن طول مولكول پلیمر و پیوند قوی بین
مونومرهای آن بوده كه تجزیه آن را توسط موجودات تجزیه كننده با
مشكل مواجه می كند.
پلی آمید (نایلون)
یکی از مهمترین پلی آمیدها ، پلی هگزا متیلن آدیپامید است که یک لیف
پلاستیک عالی با دمای ذوب بلورین (265 درجه سانتیگراد) بالاست. نایلون 6
و6 که بطور متوسط تهیه شده است، در حد متوسط بلورین است. جهت تهیه الیاف
نایلون 6 و 6 نیاز به هگزا متیلن دی آمین و اسیدآدیپیک است. هگزا متیلن دی
آمین از هیدروژناسیون آدیپونیتریل (که خود از ترکیب آمونیاک و اسیدآدیپیک
تهیه میشود)، بدست میآید و اسید آدیپیک از اکسیداسیون سیکلوهگزان تهیه
میشود.
وزن مخصوص نایلون 6 و 6، حدود 1,14 است. در مجاورت هوا و در
150درجه سانتیگراد شروع به زرد شدن میکند و در 250درجه سانتیگراد ذوب
میشود. ولی در مجاورت ازت بدون زرد شدن در 263 درجه سانتیگراد ذوب
میشود. در برابر شعله آتش نمیگیرد، ولی ذوب میشود. نایلون 6 و 6 پایدار و
دارای الاستیسیته خوبی است. این الیاف در برابر پاره شدن ، تغییر شکل دادن
، سایش و فرسایش مقاومت زیادی دارند. ضمنا اسیدها و قلیاییهای ضعیف و
مواد شوینده ، روی آن بیاثرند.
